Направление подготовки 09.03.01 «Информатика и вычислительная техника» Профиль «Вычислительные машины, комплексы, системы и сети» Аннотация к РПД Б1.0.21 «Теория вероятностей и математическая статистика»

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

09.03.01 Информатика и вычислительная техника

Профиль: Вычислительные машины, комплексы, системы и сети

Б1.О.21 «Теория вероятностей и математическая статистика»

Ин-	Наименование	Семестр 4									
декс		Кон		Академических часов 3.							
		трол		Bce-	Кон-	Лек	Лаб	Пр	CP	Кон-	
		Ь		го	такт.					троль	
Б1.О.2	Теория вероятностей и ма-	3aO	РГР	108	40	14		26	59	9	3
1	тематическая статистика										

Формируемые компетенции: ОПК-1

Содержание дисциплины

Лекции 14 шт. по 2 часа:

- 1.1 Классификация случайных событий, операции над событиями. Классическое, статистическое и геометрическое определения вероятности.
- 1.2 Аксиомы теории вероятностей и следствия из них. Условная вероятность, вероятность произведения и суммы событий. Вероятность появления хотя бы одного события. Формула полной вероятности. Гипотезы. Формула Байеса.
- 1.3 Случайные величины. Функция распределения, свойства. Дискретная случайная величина. Биномиальная и пуассоновская случайные величины: законы распределения, основные параметры. Формула Бернулли.
- 1.4 Непрерывные случайные величины. Плотность распределения непрерывной случайной величины, ее свойства. Равномерная и показательная случайные величины: законы распределения, основные параметры, вероятность попадания в промежуток.
- 1.5 Нормально распределенная случайная величина: закон распределения, основные параметры, вероятность попадания в промежуток. Теоремы Муавра Лапласа. Функция Лапласа.
- 1.6 Основные понятия математической статистики. Эмпирическая (выборочная) функция распределения. Статистические ряды. Гистограмма и полигон. Точечные оценки. Метод наибольшего правдоподобия.
- 1.7 Интервальные оценки. Проверка статистических гипотез.

Практические занятия 13 шт. по 2 часа:

- 2.1 Элементы комбинаторики.
- 2.2 Классическая вероятность.
- 2.3 Вероятность суммы и произведения событий. Вероятность появления хотя бы одного события.
- 2.4 Формулы полной вероятности и Байеса.
- 2.5 Дискретные случайные величины.
- 2.6 Биномиальное и пуассоновское распределения.
- 2.7 Непрерывные случайные величины.
- 2.8 Равномерное и показательное распределения.
- 2.9 Нормальное распределение.
- 2.10 Контрольная работа.
- 2.11 Основные понятия математической статистики. Точечные оценки. Метод наибольшего правдоподобия.
- 2.12 Интервальные оценки. Проверка гипотез.
- 2.13 Зачетное занятие.

 Год начала подготовки (по учебному плану)
 2018

 Учебный год
 2019-2020

 Образовательный стандарт (ФГОС)
 № 929 от 19.09.2017